Fairness and greatness

When I started writing about the Olympics for this space, I naturally contacted universities around the province to see who was researching what. It turns out there was a lot happening – probably a dozen universities have people doing research directly related to the Games, and everyone has experts in relevant fields.

The more interviews and research I’ve done, the more I keep coming back to the theme of fairness. It’s such a seemingly straightforward concept that becomes elusive as soon as you try to pin down the details. Even the very basics – under whose flag should an elite athlete compete? What’s a reasonable technological improvement and what’s unacceptable? Does the fact that richer countries win more medals invalidate the spirit of fair competition? What is really causing so many world records to fall – athletics or science? And if it’s science that makes the difference, is that such a bad thing?

I’ve asked the researchers I’ve spoken to how their work colours their experience of the Games. I find it reassuring that so many of them still find the Olympics exciting and meaningful. True, those who study doping, branding, and other less idealistic  subjects tend to see the Games through the prism of their expertise, but whatever flaws they notice don’t detract from the overall validity of the games.

As one doping researcher said to me, “Of course, I’m looking from a certain perspective.  I absolutely am attuned to a certain area. But sometimes there are extraordinary performances.

“There just are.”

Share: Print

Leave Comments

Blog Posts

digital wallet

Phony shoppers

Marianne Koh | September 30, 2014

Cash gave way to magnetic strips, which gave way to chip-and-PIN, which gave way to “tap-and-pay” credit card scanners. Get ready for the next thing. read more »
smart packaging

The whole package

Teresa Pitman | September 26, 2014

If you’ve ever bought ready-to-eat sushi, you may have noticed a blob of wasabi on the tray. It’s a convenient way to add pungent flavour to your lunch, but it also serves another purpose: it protects your food from micro-organisms. As food science professor Loong-Tak Lim explains, wasabi contains allylisothiocyanate, (AITC) a natural and potent anti-microbial that kills yeast and bacteria. Of course, not every food is enhanced by the strong flavour of wasabi, so Lim has developed a packaging system that offers the same antimicrobial benefits . Lim derives his AITC from ground mustard powder, and uses a patented nanotechnological process to spin tiny fibres that encapsulate the naturally sourced agent in the packaging. “The conventional approach to adding preservatives has been to add them to the food,” says Lim's research colleague Suramya Mihindukulasuriya. “But processing the food may break down the preservative. By having the preservative in the packaging, we don’t need as high a concentration to enhance the shelf-life, safety and quality of the food.” So-called “active packaging,” responds to changes in the environment and the food itself, Lim says. In this case, the membrane responds to a certain level of moisture and releases a preservative to prevent spoiling. Other active packaging materials respond to heat and light. Mihindukulasuriya works with a preservative called hexanal, the volatile organic compound you smell when you cut grass or slice a cucumber. Hexanal helps preserve cell membranes of fruits and vegetables so they don’t become soft or soggy as they ripen. The preservative also has some anti-microbial properties, which are activated by heat and humidity. Mihindukulasuriya calls her technique of enclosing the preservative using ultra-high electrical forces “electrospinning.” Lim jokes that “we are like Spiderman, spinning tiny fibres.” And the fibres are tiny – about 400 times smaller than a human hair. When exposed to humidity or water, these fibres become permeable and release the hexanal. During her PhD studies, Mihindukulasuriya also developed an oxygen indicator that is activated by ultraviolet radiation. When there is little or no oxygen in the package, the indicator is white, but if the package is damaged or torn, allowing oxygen to enter, the indicator turns blue. This matters because oxygen causes rapid deterioration of some foods, and higher levels of oxygen encourage the growth of more micro-organisms. These foods are sealed in vacuum packs or in packages flushed with nitrogen to remove the oxygen, but if the package becomes damaged at some point, oxygen can get inside. That’s where Mihindukulasuriya’s product comes in: a label with a blue line would indicate that the package should not be purchased. What’s next in active and intelligent packaging? Mihindukulasuriya is planning to develop a compound that will detect the volatile compounds produced by food when it spoils and indicate to consumers that the food should not be eaten. The technique would supplement expiry dates, which are only estimates based on typical situations. Not only would such packaging warn people that food had spoiled, it could also reassure them when it was safe to eat – even if the expiry date had passed. “People throw away lots of food that has expired but is still perfectly good to eat,” says Lim. This article was originally published by the University of Guelph. It has been edited for brevity, clarity and style, and is republished here with permission.
Ladder

Shopping highs and lows

Patchen Barss |

Sitting in a higher chair could improve your long-term financial planning. You might be more likely to buy serious tomes on the second floor of a bookstore, and to pick up lighter reading from the ground floor or basement. read more »
More Blogs »