Why basic research matters I: Mark Green

This summer, I gave a keynote presentation that covered more than 30 years of my own research. This gave me the opportunity to reflect on the research results that have made an impact, particularly in industrial practice.

The field of computer science moves so quickly that you can observe the long-term impact of your research within your own lifetime.  I found that the my most significant long-term impacts came from my pure or curiosity-driven research.  I have done a lot of applied research, but its impact has been short-term and quickly forgotten.  In addition, it’s the results of the pure research that I now teach to undergraduate students, including in our introductory computer science course.  History demonstrates how pure and applied research are intertwined.

In the 1970s, I started working on the problem of automating the design of graphical user interfaces. This may seem like an applied problem now, but long before the introduction of the Mac OS and Microsoft Windows, it was viewed as relatively useless research of no practical value. I can still vividly remember industry leaders calling me another of those crazy university researchers and insisting that “no one would ever want to use a mouse with a computer.”

In 1986, I wrote a paper on the foundations of user-interface software. At the time, it was viewed as a very theoretical paper. The journal editor thought the paper was so theoretical that I had to move some of the material, theorems and proofs to a technical report before he would accept it. He told me that no one would read the paper.

In 2005, I returned to Canada to start a new computer science program at a new university. I prepared by reviewing the standard undergraduate computer science curriculum produced by the two leading professional societies in the area.  Much to my surprise, this paper was listed as one of the topics that all undergraduate computer science students should be familiar with.  In 20 years, it had gone from too theoretical for an academic journal to part of the undergraduate curriculum.

In the 1980s, I was part of a small group of researchers investigating a “curiosity” that was an offshoot of our main line of research.  We didn’t think it would amount to much, but we wrote a few papers on it.  Over time the main line of research died out, but this offshoot started to gain traction. It has now become a standard part of software development, which I teach in our first computer science course.

Why is this important? After presenting the topic, I then state that I was one of the people who developed it. For first year students this demystifies the whole research process.  Research isn’t done by people who are long dead, but by people just like them. We need to teach our students early that they are the innovators of the future. They can’t just follow along – they can and must lead.  I believe it helps to have this message delivered by someone who has been there, who can make the story real.

If we do not expose our undergraduate students to pure research, we are doing them a great disservice. In fast-paced fields like computer science the “applied” topics that we teach them now are often out of date shortly after they graduate.  To prepare them for the future we need to whet their appetite for curiosity-driven research that will empower them to continue to explore new and different ideas long after they graduate.

Tagged: Culture, Economy, Technology, Blog, Stories

Share: Print

Leave Comments

Blog Posts

genetic barcodes

Barcoding life, one species ...

Sharon Oosthoek | May 2, 2016

Nobody knows for sure how many species exist. But scientists are certain we have identified only a fraction of the plants, animals and fungi on the planet — roughly 1.7 million species out of an estimated 10 to 20 million. "Most of the yet-to-be-identified species will be tinier life forms, but the numbers could even be larger," says University of Guelph biologist Paul Hebert. "That's just a best guess." Making an inventory of all life then would seem a Sisyphean task. But back in 2003, Hebert and his research team proposed a DNA tool for doing exactly that. At the same time, they made a convincing case for why we might want such an inventory: our species is accelerating the extinction rate of other species, and as Hebert puts it, "people take action when they know what is happening to life." Their argument was convincing enough to lead to the creation in 2010 of the International Barcode of Life (iBOL) project, an alliance representing 26 countries and headquartered at the University of Guelph.  Since then, affiliated researchers have collected from all over the world biological samples such as feathers, fur, blood and tiny bits of tissue. In 2015, they reached their goal inventorying half a million species. They have now set a ambitious target of identifying all species on the planet by 2040. As Hebert and his team originally envisioned, the tool the researchers are using to identify species is a short section of DNA from a standardized region of the genome, found in all living things. The sequence of the molecules that make up that chunk of DNA can be used to identify different species, in the same way a supermarket scanner uses the black stripes of the UPC barcode to identify purchases. As an added bonus, the DNA section is short enough to be sequenced quickly and cheaply, yet long enough to discriminate species. Fish out of water The tool has already been used to identify invasive species and the illegal sale of mislabelled endangered fish. While Hebert and his team are certainly on board with that, their ultimate vision has always been much loftier. "Each species is a book of life that describes how to reconstruct a robin or a blue jay or a monarch butterfly," says Hebert. "It's possible that by the end of the century, one-sixth of those books of life will not longer be with us. One of the objects of our work is to register all the species on the planet before they disappear." But this isn't just about creating an inventory. Rather it's about creating a digital Noah's ark. Along with the identifying section of DNA, the barcode project saves each species' entire genome — in other words, its complete set of DNA, representing instructions for building each species. That means the chemical pathways responsible for producing yet-to-be-discovered life-saving drugs will be preserved. "It's even possible that we might be able to reconstruct species," says Hebert. "Maybe humanity will decide it's sad living on a planet with few other species on it. It would be completely impossible to restore lost species if we don't have their DNA. "        

Creating community through cuisine

Emma Drake | April 27, 2016

Food is more than a meal; it can be intrinsic to a person’s identity. But for refugees, part of their identity is challenged when they settle in countries that don’t offer foods from home. “We share culture and richness through food,” says Valencia Gaspard, a PhD student in rural studies at the University of Guelph. “Food can be used to build communities and bring people together.” Valencia is part of a team of student studying the availability of ethnocultural foods in Toronto. They will be examining how these foods are used to manifest a culture through cuisine. “Keystone ingredients, such as camel’s milk or sesame oil have great importance to the meal,” she says. “Not being able to choose what you eat is dis-empowering.” read more »

Farmers get ahead of ...

Araina Bond | April 19, 2016

Anticipating Mother Nature has always been an important part of farming. Now farmers in Northeastern Ontario can make more informed decisions using real-time data about environmental conditions, thanks to Nipissing University researchers. The Nipissing team has created an online system called GeoVisage, which uses seven weather stations throughout Northern Ontario to collect data on microclimates. That includes air and soil temperature, relative humidity, wind speed, leaf wetness and photosynthetically active radiation — that is, sunlight plants can use for photosynthesis. read more »
quinoa plants

Quinoa puts down roots ...

Jessica Shapiro | April 14, 2016

Ancient Incas considered quinoa their most sacred food. Packed with protein, vitamins and amino acids, it gave them stamina, strength and energy needed for survival. No wonder NASA has researched growing quinoa on long journeys to outer space. Despite the seed's explosion in world popularity over the past few years, including a massive increase in demand throughout North America, almost no farmers outside the Andes Mountains in South America grow it. Issues related to quality, supply, cost and importation have encouraged scientists to experiment with cultivating the crop in Ontario. At the Trent University Sustainable Agriculture Experimental Farm, Mehdi Sharifi is working with his students to make organic quinoa production viable for Ontario farmers. read more »
Larissa Barelli waters plants

Fine tuning fungi’s ...

Sharon Oosthoek | April 8, 2016

Nobody takes revenge like Mother Nature. After all, she created entomopathogenic fungi — organisms that not only kill crop pests, but offer up nutrients in the insects' bodies to the plant. "It's a cool mechanism," says University of Brock PhD biotech student Larissa Barelli who studies evolution of these fungi. "Certain species can drill through the insect's cuticle, grow within it and eat it from the inside. They can also release toxins that kill the insect. The fungi then transfers nitrogen from the insect to the plant." read more »
More Blogs »