Bet you can’t research just one

We’re standing in an unconventional laboratory in a campus research facility – the kind of place you’d never imagine anything unusual happens.

A technician lowers a sample of experimental material F07026 into a bath of heated triglyceride compounds.

Several molecular changes happen at once. A process called the Maillard reaction causes the sugars in F07026 to caramelize and darken. The triglycerides – also known as vegetable oil – displace the water in the material. The evicted water causes the bath to roil and spit.

As soon as the water has boiled away and the oil is calm again, the technician removes the samples, spreading them out to cool.

The experiment requires one more step to complete: the addition of sodium chloride crystals.

Salted potato chips, ready to eat.

The University of Guelph has had a frying lab since the 1980s. Those were heady days for potato research at the university, the pinnacle of which was the development of the Yukon Gold potato.

There’s a new quest now: the race is on to find an even greater tater.

What does this wonder spud of the future have that today’s tubers do not? For one thing, plant breeders are looking for a strain of potato that can be stored at cooler temperatures without its starches turning to sugar.

“The industry is always interested in knowing whether varieties will produce good quality chips when stored at a lower temperature because they can reduce sprout inhibitors and maintain dormancy longer, says Vanessa Currie, the research technician who has been frying sample batches for me.

Potato chips

One potato? Two potatoes? Actually, it’s one potato stored two different ways.

Currie laid out two portions of chips on the table. Both were made from F07026 potatoes, which had been grown, harvested sliced and fried exactly the same way. But the differences were stark: one pile was tawny and delicious, while the other dark brown stack tasted burnt and bitter.

The difference was in how they had been stored after harvest. The burnt chips came from spuds stored at 4 degrees, while the tastier snack had spent the winter at 10-12 degrees. In the cooler storage area, more starch turned to sugar, and that made all the difference.

“The Maillard reaction causes sugars to brown when frying,” said Alan Sullivan, a Guelph researcher and plant breeder who oversees potato research at the university. “The sugars combine with amino acids and cause a dark colour. In a lot of foods that’s fine. In fact, it’s what gives bread and seared meat their appealing colour.”

But in the deep fryer, too much sugar spoils the chip.

Chip producers want a spud that keeps its starch at 4-8 degrees: If they could store them at that temperature, they could reduce their use of sprout inhibitors and anti-pest chemicals. They could store the potatoes for longer, which would lead to major cost savings.

Cold storage is just one issue of concern for the Guelph researchers. Another desirable quality is rapid maturation (which would allow for a longer harvesting season and less storage time).

“Potato chip producers want product 12 months of the year,” Currie says. “There’s a significant part of our season in Ontario where they don’t have local potatoes. At that time they have to import them from the States at considerable expense.”

And of course, what’s good for the chip bag is different than what’s good for the mash or the fry. Breeders aren’t seeking a single superpotato, so much as they are a variety of new strains, each optimized for starch content, water content, robustness in the face of rain and drought, yield, disease and pesticide resistance, and many other factors.

Of course, private companies like Frito Lay have their own fry labs. But Sullivan thinks there is great value in having such research take place at a university.

“We are publicly funded, and everything that we do is public,” says Sullivan. “We produce reports that are disseminated to the industry – not just potato growers but on the table stock side there are chefs who want to know what the latest is. Loblaws is also interested.”

Breeding and cross breeding is a lengthy process with many factors – sometimes you get a potato that’s great in cold storage, but the yield is inadequate. In fact, species F07026 is one of hundreds that have been researched at the university. Hope, of course, sprouts eternal.

“Everybody is looking for the next Yukon Gold,” Sullivan says.

 

The Research Matters blog periodically publishes a range of stories centred around a specific theme. This story is part of a series on Food and Drink.

Tagged: Economy, Nature, Resources, Technology, Stories

Share: Print

Leave Comments

Blog Posts

Warring identities

Mary Chaktsiris | November 20, 2014

Can buying pigeons be a crime? In 1916, a seemingly routine act of receiving a crate of pigeons was misconstrued as an act of war. John Balasz, born in a country at war with the British Empire, was accused in Sault St. Marie of using the pigeons to carry unauthorized wartime messages. read more »

Polanyi Prize for Literature: ...

COU Staff | November 17, 2014

In modern times, alarmist visions of a grey tsunami of retirees, a lost generation of unemployed young people and a theorized war against youth have been warning global audiences that people of different age groups are simply incompatible. Andrea Charise’s research examines how the generational identity and intergenerational conflict that’s evident today was represented much earlier in literature. In fact, in 19th-century British literature and culture, older age was being reconceived, not only in literature but also as a field for health-based research. Today, we are told to do the Sudoku and exercise our body to keep ourselves young, but aging and the notion that we must keep our body and mind in perpetual motion is a late 18th-century way of thinking about the body. Charise’s research also examines the politics and poetics of generational relations in 19th--century Britain, which again surface in modern times. The conflict between the generations was evident in literary texts as far back as Oedipus Rex and King Lear, but in 1798, British economist Thomas Malthus set off a culture war when he blamed the potential catastrophe of overpopulation on the thriving reproductive capacities of young people. In modern times, Charise says the defining of age-based groups such as Boomers and Millenials is evidence of generational identity and intergenerational conflict in the modern literary imagination. Literature and the humanities, her research concludes, are crucial to communicating in accessible ways the consequences of the way we think about age and the way generations think about each other. Andrea Charise, Assistant Professor of Health Studies, University of Toronto, Scarborough wins the Polanyi Prize for Literature.

Polanyi Prize for Physics: ...

COU Staff |

Eduardo Martin-Martinez’s research explores a new field that combines the two most fundamental pillars of physics – quantum theory and general relativity - to understand the nature of the gravitational interaction and to build new technology that breaks the boundaries of what we thought was possible. Einstein gave us a new theory of gravity in the early 1900s, and for years physicists have tried unsuccessfully to examine gravity in relation to quantum theory. Martin-Martinez wants to use quantum information theory to learn more about gravity. General relativity – which has been used in modern technology such as GPS – tells us that the force of gravity is caused by curvature of spacetime. Two masses attract in the way two billiard balls attract each other when placed on a trampoline. Mass and energy move in a curved spacetime and the spacetime is curved by the presence of mass and energy. One of the most important modern challenges is to find a quantum description of gravity. Quantum information theory studies the storage, transmission and processing of information through quantum systems. In this context, quantum mechanics allows us to carry out tasks that were previously considered impossible. Quantum physics can deliver computers exponentially faster than the computers we can conceive of today, solve complex problems, store large amounts of information, and allow absolutely secure communications using quantum cryptography. The goal of Martin-Martinez’s research is to use powerful tools from quantum information, science and technology to study quantum effects induced by gravity and, through them, to learn new information about spacetime. At the same time, he wants to use the theory of relativity to develop new quantum technologies. Potential applications include quantum computing technology and answers to how curvature and quantum theory affect the processing of information. Eduardo Martin-Martinez, Research Assistant Professor, Institute for Quantum Computing, Department of Applied Mathematics, University of Waterloo wins the Polanyi Prize for Physics.

Polanyi Prize for Economic ...

COU Staff |

Rahul Deb’s research examines whether it is possible to tell using a relatively simple test whether firms involved in a competitive bid for business with government or another regulated vendor are genuinely competing, or whether they are secretly colluding. read more »
More Blogs »