Can epileptic seizures be predicted and prevented?

Q & A with Professor Berj L. Bardakjian

In honour of Epilepsy Awareness Month, Erin Vollick sat down with a leading neurological researcher at the University of Toronto, Berj L. Bardakjian.

A biomedical engineering Professor at the Institute of Biomaterials & Biomedical Engineering (IBBME) and the Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), Bardakjian works with a team of neurological specialists to classify different brain states using recordings of its electrical rhythms, and from there, to pinpoint seizure zones in the epileptic brain – research that could reduce the amount of tissue cut during corrective surgical procedures, as well as lead to better surgical outcomes.

What is epilepsy?

Contrary to what most people imagine, epilepsy is not considered a disease, but a disorder characterized by changes in the brain that lead to seizures. But epilepsy actually covers a wide range of disorders. There is not just one type of epilepsy, but many.

Our present theory is that seizures are caused when the brain is in a state of hyper-excitability. I think of the brain as a symphony. The electrical activity in the brain is polyrhythmic, as there are many interacting rhythms, and none of them are “regular”. But with an epileptic seizure, suddenly, all the cells in the brain start synchronizing together and they enter a singular, regular rhythm, which means that all the other normal functions of the brain are not occurring.

What are some of the historical associations surrounding epilepsy?

Epilepsy used to imply “possession.” Historically, people who suffered epileptic seizures were thought to be possessed by the devil, or were entering mythical or mystical states. Personally, I wonder about many of our geniuses – Napoleon Bonaparte, Beethoven, and Van Gogh, for instance, all had epilepsy. Was their genius related to their epilepsy? Is hyper-excitability what gave us Beethoven’s 9th symphony?

What causes hyper-excitability?

Hyper-excitability occurs due to possible chemical environment changes in the brain, at times even visual changes. A few years ago, for instance, people in Japan who were watching TV were getting seizures from the flickering lights in their television programs.

How is epilepsy managed?

There are three main courses of treatment. Children who have epilepsy can be put on a “ketogenic diet” – it’s a horrible diet, very high in fat, but it can help control the seizures.

Drugs are the next step, and these drugs are designed to reduce the excitation of the brain that leads to this synchronous brain activity and seizures.

Drugs don’t work for some people, so surgery is an option. Surgeons will try to cut out that part of the brain that is the focal point of the seizures. But there are some areas of the brain that can’t be cut, such as those vital cognition areas. Also, you can only perform surgery if the epilepsy is “focal” to one region, and not “generalized” in multiple sites of the brain.

What kind of research is your team conducting?

The big buzz word right now is ‘Deep Brain Stimulation’.  We’re trying to create implantable devices that can predict seizures and stimulate the brain in such a way as to prevent seizures. Via electrodes, we want to input into the brain high complexity electrical signals – like a symphony – that would mimic the rhythmic signals that normal, functioning brains produce. The simulator we’re working on is a model of the electrical rhythmic activities of the functioning brain.

This kind of therapy wouldn’t have the drawbacks that drugs have. For one thing, this is a more localized treatment, and this kind of therapy would sidestep any drug sensitivity and side-effect issues.

But currently we’re trying to pinpoint those regions in the brain where seizures are occurring with a greater degree of accuracy.

How can you pinpoint or predict seizures?

We record the electrical activity of the brain and then classify the various state transitions between these activities. We then look for differences in pre-seizure states. Sometimes we simply detect the seizures.

What has changed in epilepsy research in the last 20 years?

What’s new about our research, and the best part of the research we’re conducting right now, is that we work as part of a team: neurologists at Toronto Western Hospital, neurosurgeons, pharmacologists, neurophysiologists, physicians, and neural (biomedical) engineers.

What breakthroughs do you think are imminent or potentially imminent?

First, and we’re nearly there: we’re trying to help surgeons cut out the focal region in the brain that needs to be removed to stop seizures. Currently, surgeons just cut as much as they can rather than what needs to be cut, and even that doesn’t guarantee they cut out the right region.

From an ongoing research perspective, we’re trying to understand more about the hyper-excitability that leads to epileptic seizures. This is still an outstanding mystery – and we’re using various models, such as computer models, to answer those questions.

This story originally appeared in a University of Toronto publication, and is reproduced here with permission.

Tagged: Health, Blog

Share: Print

Leave Comments

Blog Posts

Warring identities

Mary Chaktsiris | November 20, 2014

Can buying pigeons be a crime? In 1916, a seemingly routine act of receiving a crate of pigeons was misconstrued as an act of war. John Balasz, born in a country at war with the British Empire, was accused in Sault St. Marie of using the pigeons to carry unauthorized wartime messages. read more »

Polanyi Prize for Literature: ...

COU Staff | November 17, 2014

In modern times, alarmist visions of a grey tsunami of retirees, a lost generation of unemployed young people and a theorized war against youth have been warning global audiences that people of different age groups are simply incompatible. Andrea Charise’s research examines how the generational identity and intergenerational conflict that’s evident today was represented much earlier in literature. In fact, in 19th-century British literature and culture, older age was being reconceived, not only in literature but also as a field for health-based research. Today, we are told to do the Sudoku and exercise our body to keep ourselves young, but aging and the notion that we must keep our body and mind in perpetual motion is a late 18th-century way of thinking about the body. Charise’s research also examines the politics and poetics of generational relations in 19th--century Britain, which again surface in modern times. The conflict between the generations was evident in literary texts as far back as Oedipus Rex and King Lear, but in 1798, British economist Thomas Malthus set off a culture war when he blamed the potential catastrophe of overpopulation on the thriving reproductive capacities of young people. In modern times, Charise says the defining of age-based groups such as Boomers and Millenials is evidence of generational identity and intergenerational conflict in the modern literary imagination. Literature and the humanities, her research concludes, are crucial to communicating in accessible ways the consequences of the way we think about age and the way generations think about each other. Andrea Charise, Assistant Professor of Health Studies, University of Toronto, Scarborough wins the Polanyi Prize for Literature.

Polanyi Prize for Physics: ...

COU Staff |

Eduardo Martin-Martinez’s research explores a new field that combines the two most fundamental pillars of physics – quantum theory and general relativity - to understand the nature of the gravitational interaction and to build new technology that breaks the boundaries of what we thought was possible. Einstein gave us a new theory of gravity in the early 1900s, and for years physicists have tried unsuccessfully to examine gravity in relation to quantum theory. Martin-Martinez wants to use quantum information theory to learn more about gravity. General relativity – which has been used in modern technology such as GPS – tells us that the force of gravity is caused by curvature of spacetime. Two masses attract in the way two billiard balls attract each other when placed on a trampoline. Mass and energy move in a curved spacetime and the spacetime is curved by the presence of mass and energy. One of the most important modern challenges is to find a quantum description of gravity. Quantum information theory studies the storage, transmission and processing of information through quantum systems. In this context, quantum mechanics allows us to carry out tasks that were previously considered impossible. Quantum physics can deliver computers exponentially faster than the computers we can conceive of today, solve complex problems, store large amounts of information, and allow absolutely secure communications using quantum cryptography. The goal of Martin-Martinez’s research is to use powerful tools from quantum information, science and technology to study quantum effects induced by gravity and, through them, to learn new information about spacetime. At the same time, he wants to use the theory of relativity to develop new quantum technologies. Potential applications include quantum computing technology and answers to how curvature and quantum theory affect the processing of information. Eduardo Martin-Martinez, Research Assistant Professor, Institute for Quantum Computing, Department of Applied Mathematics, University of Waterloo wins the Polanyi Prize for Physics.

Polanyi Prize for Economic ...

COU Staff |

Rahul Deb’s research examines whether it is possible to tell using a relatively simple test whether firms involved in a competitive bid for business with government or another regulated vendor are genuinely competing, or whether they are secretly colluding. read more »
More Blogs »