Can wood replace plastic?

This article is being created using a keyboard that is made up mostly of the material that revolutionized manufacturing when it was invented in the mid 1800s—plastic.

The problem with plastic, however, is that it is made from petroleum. We’re running out of petroleum. Besides, the actual manufacturing process that creates plastic is harmful to the environment.

But Emma Master believes she will one day be able to replace the plastic that makes up this keyboard with wood fibre. That’s right—wood or other material that comes from plants. The general term is biomass—“The structural stuff that living systems build,” says Master.

Master, assistant professor* in Chemical Engineering and Applied Chemistry (and cross-appointed in Cell and Systems Biology), is working with a cadre of engineers, biologists, and physical scientists at U of T in a unique-in-Canada biotechnology research centre called BioZone.

Funded by the Canada Foundation for Innovation, BioZone brings together biotech research programs that are addressing the urgent challenges in sustainable energy and environmental protection.

“My motivation is to harness the diversity and complexity of natural materials,” says Master. “My colleagues and I believe that biological systems synthesize some of the most ornate materials. If we are going to live in a world that doesn’t rely on petroleum and fossil fuel, biomass will be crucial. It’s a wonderful material that we have primarily used only coarsely thus far, but has so much more potential.”

Master’s chief tool in harnessing biomass is another invention of nature—the enzyme.

Simply put, enzymes make things happen. Scientists call them catalysts—proteins that create chemical reactions. When you swallow food, enzymes help you digest it. They are also at the centre of making apples turn brown when they are exposed to air. “We all have enzymes in our cells that help us operate as living beings,” says Master.

Her enzyme research program has three prongs—enzyme discovery, engineering, and application development.

One of her research activities involves changing plant fibres’ ability to repel water. “If we are going to replace plastic with plant fibre, we have to match the plant’s ability to repel water with that of plastic, which handles this quite well.” To do that, they are increasing what is called the ‘surface hydropho-bicity’ of the fibre. And to do that, Master’s research team is linking water-repelling chemicals onto the surface of the fibre using enzymes as catalysts.

Another project has Master’s team working with scientists from the Alberta Research Council in taking fibres from wood, using enzymes to make them very smooth through a polishing process to generate what’s called ‘nanocrystalline cellulose’, which can be used in a broad range of products including liquid crystal displays—better known as the LCDs used in your flat screen TV or digital clock.

Master, who is also a member of U of T’s Pulp and Paper Research Centre, believes firmly in the potential for greater uses for wood fibre.

“In addition to the environmental benefits that we can realize by using wood fibre to replace petrochemicals, there is an economic motivation too. It is increasingly difficult for Canadian forest companies to compete in conventional pulp and paper markets, and so it is necessary to start harnessing higher value from this rich natural resource. Other northern countries, including Sweden, have already recognized this. My hope is that through research innovation, Canada will lead in the development of novel, renewable forest products, which will benefit Canadian communities as well as the environment.”

 

*This story was originally published in U of T’s Edge Magazine and is reposted here with permission. Since the time of original publication, Emma Master has become an Associate Professor.

Tagged: Nature, Resources, Technology, Events, Stories

Share: Print

Leave Comments

Blog Posts

genetic barcodes

Barcoding life, one species ...

Sharon Oosthoek | May 2, 2016

Nobody knows for sure how many species exist. But scientists are certain we have identified only a fraction of the plants, animals and fungi on the planet — roughly 1.7 million species out of an estimated 10 to 20 million. "Most of the yet-to-be-identified species will be tinier life forms, but the numbers could even be larger," says University of Guelph biologist Paul Hebert. "That's just a best guess." Making an inventory of all life then would seem a Sisyphean task. But back in 2003, Hebert and his research team proposed a DNA tool for doing exactly that. At the same time, they made a convincing case for why we might want such an inventory: our species is accelerating the extinction rate of other species, and as Hebert puts it, "people take action when they know what is happening to life." Their argument was convincing enough to lead to the creation in 2010 of the International Barcode of Life (iBOL) project, an alliance representing 26 countries and headquartered at the University of Guelph.  Since then, affiliated researchers have collected from all over the world biological samples such as feathers, fur, blood and tiny bits of tissue. In 2015, they reached their goal inventorying half a million species. They have now set a ambitious target of identifying all species on the planet by 2040. As Hebert and his team originally envisioned, the tool the researchers are using to identify species is a short section of DNA from a standardized region of the genome, found in all living things. The sequence of the molecules that make up that chunk of DNA can be used to identify different species, in the same way a supermarket scanner uses the black stripes of the UPC barcode to identify purchases. As an added bonus, the DNA section is short enough to be sequenced quickly and cheaply, yet long enough to discriminate species. Fish out of water The tool has already been used to identify invasive species and the illegal sale of mislabelled endangered fish. While Hebert and his team are certainly on board with that, their ultimate vision has always been much loftier. "Each species is a book of life that describes how to reconstruct a robin or a blue jay or a monarch butterfly," says Hebert. "It's possible that by the end of the century, one-sixth of those books of life will not longer be with us. One of the objects of our work is to register all the species on the planet before they disappear." But this isn't just about creating an inventory. Rather it's about creating a digital Noah's ark. Along with the identifying section of DNA, the barcode project saves each species' entire genome — in other words, its complete set of DNA, representing instructions for building each species. That means the chemical pathways responsible for producing yet-to-be-discovered life-saving drugs will be preserved. "It's even possible that we might be able to reconstruct species," says Hebert. "Maybe humanity will decide it's sad living on a planet with few other species on it. It would be completely impossible to restore lost species if we don't have their DNA. "        

Creating community through cuisine

Emma Drake | April 27, 2016

Food is more than a meal; it can be intrinsic to a person’s identity. But for refugees, part of their identity is challenged when they settle in countries that don’t offer foods from home. “We share culture and richness through food,” says Valencia Gaspard, a PhD student in rural studies at the University of Guelph. “Food can be used to build communities and bring people together.” Valencia is part of a team of student studying the availability of ethnocultural foods in Toronto. They will be examining how these foods are used to manifest a culture through cuisine. “Keystone ingredients, such as camel’s milk or sesame oil have great importance to the meal,” she says. “Not being able to choose what you eat is dis-empowering.” read more »

Farmers get ahead of ...

Araina Bond | April 19, 2016

Anticipating Mother Nature has always been an important part of farming. Now farmers in Northeastern Ontario can make more informed decisions using real-time data about environmental conditions, thanks to Nipissing University researchers. The Nipissing team has created an online system called GeoVisage, which uses seven weather stations throughout Northern Ontario to collect data on microclimates. That includes air and soil temperature, relative humidity, wind speed, leaf wetness and photosynthetically active radiation — that is, sunlight plants can use for photosynthesis. read more »
quinoa plants

Quinoa puts down roots ...

Jessica Shapiro | April 14, 2016

Ancient Incas considered quinoa their most sacred food. Packed with protein, vitamins and amino acids, it gave them stamina, strength and energy needed for survival. No wonder NASA has researched growing quinoa on long journeys to outer space. Despite the seed's explosion in world popularity over the past few years, including a massive increase in demand throughout North America, almost no farmers outside the Andes Mountains in South America grow it. Issues related to quality, supply, cost and importation have encouraged scientists to experiment with cultivating the crop in Ontario. At the Trent University Sustainable Agriculture Experimental Farm, Mehdi Sharifi is working with his students to make organic quinoa production viable for Ontario farmers. read more »
Larissa Barelli waters plants

Fine tuning fungi’s ...

Sharon Oosthoek | April 8, 2016

Nobody takes revenge like Mother Nature. After all, she created entomopathogenic fungi — organisms that not only kill crop pests, but offer up nutrients in the insects' bodies to the plant. "It's a cool mechanism," says University of Brock PhD biotech student Larissa Barelli who studies evolution of these fungi. "Certain species can drill through the insect's cuticle, grow within it and eat it from the inside. They can also release toxins that kill the insect. The fungi then transfers nitrogen from the insect to the plant." read more »
More Blogs »